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Field-Singularity Correction in 2-D Time-Domain
Haar-Wavelet Modeling of Waveguide

Components
Masafumi Fujii, Member, IEEE,and Wolfgang J. R. Hoefer, Fellow, IEEE

Abstract—A time-domain Haar-wavelet-based modeling tech-
nique has been applied to two-dimensional waveguide problems
including discontinuities. The field singularity at discontinuities
such as edges and corners of conductors is corrected by quasi-static
field approximation. Combination of quasi-static correction and
wavelet modeling significantly improves the computational effi-
ciency compared to conventional time-domain analysis techniques.
The proposed technique was applied to waveguides perturbed
by thin and thick irises and also iris-coupled waveguide filters.
The computational efficiency of the technique is demonstrated by
examining the convergence of the results obtained with different
discretizations.

Index Terms—Electromagnetic-field analysis, field-singularity
correction, Haar wavelets, time domain.

I. INTRODUCTION

WAVELET theory has been introduced to time-domain
formulation of electromagnetic-field analysis [1],

[2] to increase computational efficiency and accuracy com-
pared to conventional algorithms. It has been reported that
wavelet basis functions allow coarser discretization than the
conventional space discrete methods because of the small
numerical dispersion property when applied to the electro-
magnetic-field analysis. When thresholding techniques are
included, wavelet-based methods acquire an adaptive grid
capability, which is one of the most desirable features in
solving differential equations.

However, there are two difficulties that must be overcome
when using wavelets. One is a realization of complicated
boundary conditions and the other is an implementation of
a thresholding technique—both may significantly increase
computational overhead. Several papers have been published to
tackle these difficulties by employing mathematically more so-
phisticated wavelets such as Daubechies’ compactly supported
wavelets with two vanishing moments [3]–[5] and biorthogonal
B-spline wavelets [6]. These techniques have advantages in
specific applications. However, significant advantages over
the conventional analysis techniques have not been achieved
thus far in terms of versatility, accuracy, and computational
efficiency.
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In this paper, the time-domain Haar-wavelet-based
(TD-Haar) modeling technique [7], [8] for the two-di-
mensional (2-D) TE waveguide mode has been formulated
with a complete set of the 2-D Haar wavelets. Although Haar
scaling and wavelet functions are simple rectangular functions,
they have the following important features.

1) Haar wavelets are the only wavelets that are real, com-
pactly supported, symmetric, and orthogonal.

2) This simplicity allows the modeling of complicated
boundary conditions to be easier than other wavelet-based
methods.

3) The minimum support property allows arbitrary spatial
grid intervals, leading to a nonuniform grid scheme.

These features of Haar wavelets fit very well to the space-dis-
crete analysis methods like the finite-difference scheme.

In order to apply the 2-D TD-Haar modeling technique to
waveguide structures, the following various features have been
implemented in this paper:

1) perfect electric conductor (PEC) and perfect magnetic
conductor (PMC) conditions;

2) Berenger’s perfectly matched layer (PML) absorbing
boundary condition [9];

3) 90 and 0 corner node with field-singularity correction
by means of quasi-static field approximation that was
first applied to the finite-difference time-domain (FDTD)
method by Mur [10].

The combination of Haar-wavelet modeling with the
field-singularity correction technique considerably improves
the computational performance; the field-singularity correc-
tion allows us to use coarser discretization. Moreover, the
Haar-wavelet modeling improves accuracy, especially when
the discretization is coarse and reduces the number of operation
approximately by half [8], [11].

The TD-Haar modeling is first applied to a simple rectan-
gular waveguide terminated with PML absorbing boundaries.
This example conveys a clear understanding of the decomposi-
tion of the electromagnetic field in a waveguide, as well as the
behavior of the wavelet basis in the analysis. The technique is
then applied to the analysis of waveguides with thin and thick
inductive irises and two types of iris-coupled waveguide filters.
These applications demonstrate the adaptability of the field-sin-
gularity correction in a wavelet-based time-domain field-mod-
eling technique.
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Fig. 1. 2-D Haar basis functions for anE node. Hatched regions represent
+1 and unhatched regions represent�1. (a)� (x)� (z), (b)� (x) (z), (c)
 (x)� (z), (d) (x) (z).

II. FORMULATION AND IMPLEMENTATION

A. 2-D Time Iterative Difference Equations

Maxwell’s curl equations for the TE case

(1)

(2)

(3)

are discretized. The field variables , , and are first
expanded by using the complete set of the 2-D Haar-wavelet
basis functions shown in Fig. 1. Using the quantities that are
defined by and fields multiplied by the grid intervals

(4)

(5)

(6)

and applying Galerkin’s procedure to these components with
Haar scaling and wavelet basis functions, we obtain time-step-
ping update equations of the following form [7], [8]:

(7)

(8)

(9)

where the updating coefficients with the material constants, ,
and are given by

(10)

(11)

Fig. 2. Implementation of a 90� corner node at the “lu” sampling point of node
(i; k). Thin solid lines show the equivalent Yee grid. The hatched region shows
a PEC.

(12)

(13)

The notations are simplified as ,

, etc., with the time interval ,
time index , space indexes and , and wavelet and scaling
functions and . Equations (7)–(9) are the same as in
the conventional FDTD method, except that they are computed
for the four individual basis functions , , , and

individually.

B. PEC Edge and Corner Node

In order to model corners and edges of a conductor, special
nodes are implemented to enforce the field near the corners and
the edges to have a smooth field distribution. Furthermore, the
singular fields around the corners and the edges are corrected
by using quasi-static field approximation [10].

1) 90 Corner Node: Fig. 2 shows an example of a corner
node at the “ ” sampling point. For the implementation of a 90
corner node, fields at the sampling points are calculated by
interpolation from the peripheral field values. In Fig. 2, the
fields at the corner node (noted with a black dot with a circle) are
interpolated from the peripheral field values (noted with double
circles). By using the second-order Lagrange interpolation, and
considering that at the corner, the fields at the
sampling points “ ,” “ ,” and “ ” are, respectively, given by

(14)

(15)

(16)
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Fig. 3. 90� corner located at the “lu” sampling point

with the Lagrange polynomial coefficients

(17)

(18)

(19)

The Haar-basis coefficients at node are then obtained by
the linear transformation

(20)

where

(21)

2) Field-Singularity Correction at 90Corners: Following
the discussion in [10], the implementation of the field-singu-
larity correction at the corner of the “” sampling point (see
Fig. 3) is given by

(22)

(23)

where , and the correction factor
is .

3) 0 Edge Node:The 0 edge node is implemented in a sim-
ilar way as in the 90corner node; it is slightly modified such
that the fields at five sampling points around the edge are inter-
polated and corrected. For the edge node at the “” sampling

Fig. 4. Implementation of a 0� edge node at the “lu” sampling point of node
(i; k). Thin solid lines show the equivalent Yee grid.

Fig. 5. 0� edge located at the “lu” sampling point.

point, shown in Fig. 4, additional fields at sampling points “”
and “ ” of node are interpolated by

(24)

(25)

where the Lagrange polynomial coefficients are given by
(17)–(19). The above equations are calculated together with
(14)–(16) and the resulting field distribution is converted to
Haar basis coefficients by the linear transformation (20).

4) Field-Singularity Correction at 0Edges: The field sin-
gularity at the 0 edge shown in Fig. 5 is given by

(26)

together with (22) and (23), where and the correction
factor is .
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Fig. 6. Decomposition of theE field distribution for theTE mode propagating in the WR-28 waveguide section. (a) TotalE field. (b) Geometry of the
waveguide section. (c) Wavelet decomposition of the totalE field into the 2-D Haar basis functions. In (c), each of the four quadrants associated with the basis
function coefficientsE , E , E , andE covers the entire waveguide section depicted in (a) and (b).

(a)

(b)

Fig. 7. Top view of the inductive irises in WR-28 waveguide.a = 7:112mm,
d = a=2, andt = a=6. (a) Thin iris. (b) Thick iris.

III. A PPLICATION TO WAVEGUIDE ANALYSIS

TD-Haar modeling was first applied to a simple WR-28 wave-
guide, then to the WR-28 waveguides containing discontinuities
such as thin and thick inductive irises, and finally to iris-cou-
pled waveguide filters. The waveguides in this paper were all
terminated with eight-layer Berenger’s PML absorbing bound-
aries [9]. The implementation of the PML boundary conditions
is straightforward because it is implemented for each basis func-
tion individually, as in the standard FDTD method. It must be
noted that the PEC or PMC boundaries for the waveguide side-
walls are enforced even in the PML region.

A. Simple Rectangular Waveguide

A simple WR-28 rectangular waveguide was first analyzed
to demonstrate the decomposition of the total field into the 2-D
basis functions , , , and . The distributions of the
total field are plotted in Fig. 6, together with the coefficients

(a)

(b)

Fig. 8. Discretization of the inductive irises in WR-28 waveguide. Thin lines
represent Yee grid lines and thick lines represent the waveguide walls. (a) Thin
iris. (b) Thick iris.

, , , and from which the total field is re-
constructed.

It is noted that, in Fig. 6, the major part of the field is repre-
sented by , and that the magnitude of is much smaller
than . Note also that the zero tangential electric field at the
PEC boundary is achieved through the superposition of the four
basis function coefficients.
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(a)

(b)

Fig. 9. S-parameters for the thin iris in a WR-28 waveguide obtained: (a)
with field-singularity correction and (b) without correction. —: Marcuvitz’s
equivalent-circuit approximation. - - -:�x = �z = a=48. � � � � � �: �x =

�z = a=24. - � - � -: �x = �z = a=12.

B. Waveguides with Inductive Irises

Waveguides with thick and thin inductive irises [12] were
analyzed with and without the field-singularity correction.
The configuration and the discretization of the waveguides
are depicted in Figs. 7 and 8, respectively. A PMC wall was
placed along the longitudinal center of symmetry of the wave-
guide to reduce the analysis region by half. Three different
discretizations were applied to each structure and convergence
of the resulting -parameters was examined. For the thin
iris, the grid intervals were , , and

, while for the thick iris, ,
, and , where the width of the

waveguide mm.
The -parameters of the waveguides obtained by the

TD-Haar modeling are shown in Figs. 9 and 10. For the thin
iris structure, the frequency response was also obtained by
Marcuvitz’s equivalent-circuit approximation [13], which, in
this case, has a tolerance of less than 1% in magnitude or
0.086 dB. The equivalent-circuit approximation for the thick
iris is not demonstrated here because the approximation error
is not provided in [13].

(a)

(b)

Fig. 10. S-parameters for the thick iris in a WR-28 waveguide obtained: (a)
with field-singularity correction and (b) without correction. —: (�x = a=48,
�z = a=51). - - -: (�x = a=24, �z = a=27). � � � � � �: (�x = a=12,
�z = a=15).

In Figs. 9 and 10, one can see that, as the discretization be-
comes finer, the -parameters converge to a certain values. The
convergence is better when the field-singularity correction is im-
plemented in the analysis.

C. Iris Coupled Waveguide Filter—Thin Irises

A waveguide filter with infinitely thin irises [12] shown in
Fig. 11 was analyzed. In order to discretize the structure accu-
rately, the grid interval was chosen to be in the direction
of the width of the waveguide, where mm. The
distance between the outer iris and PML absorbing boundary
condition (ABC) was chosen to be . The grid interval along
the length of the waveguide was 0.0875 mm. A PMC wall was
placed across the longitudinal center of symmetry of the wave-
guide and the total number of Yee cells was 48642.

Note that the grid employed for this case is considerably fine
simply due to the accurate discretization of the structure. By
using a nonuniform grid scheme, much coarser discretization is
available; hence, taking advantage of the improvement of com-
putational efficiency through the TD-Haar modeling technique.
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Fig. 11. Top view of iris coupled WR-28 waveguide filter.a = 7:112 mm,
d = a=2, d = a=4, d = a=6,L = 4:90 mm, andL = 5:595 mm.

Fig. 12. S-parameters for the waveguide filter consisting of thin irises. —:
with field-singularity correction. - - -: without field-singularity correction.

Fig. 13. Top view of the iris coupled WR-28 waveguide filter.
a = 7:0702 mm,d = 3:6018, d = 2:4, L = 4:169, L = 4:702 mm,
T = 1:434 mm, andT = 1:1 mm.

This structure was analyzed with and without the field-sin-
gularity correction at the edges of the irises, and the resulting

-parameters are shown in Fig. 12. Even with the present dis-
cretization, the field-singularity correction makes a slight cor-
rective frequency shift in the-parameters. The CPU time was
about 3 h. To obtain the same accuracy without the field-singu-
larity correction, one would need a finer discretization, leading
to a longer computation.

D. Iris Coupled Waveguide Filter—Thick Irises

A waveguide filter consisting of thick irises shown in Fig. 13
was then analyzed. Uniform square grids were used in the anal-
ysis, and the grid interval was chosen to be or 0.0667
mm. A PMC wall was placed across the longitudinal center of
symmetry of the waveguide. The total number of Yee cells was
53 443. Due to the restriction of the uniform grids, the filter

Fig. 14. S-parameters for the waveguide filter consisting of thick irises. —:
with field-singularity correction. - - -: without field-singularity correction.

TABLE I
CALCULATION CONDITIONS FOR THEWAVEGUIDE PERTURBED BY A THIN IRIS

configuration is not exactly identical to the original design [14],
[15]. The maximum discretization error occurred at the outer
irises, and was 3%.

This structure was again analyzed with and without the
field-singularity correction at the corners of the irises. The
resulting -parameters are shown in Fig. 14. The discretization
error caused a frequency shift by about 200 MHz for the second
dip. However, this problem can be overcome by an accurate
discretization using nonuniform grids. The field-singularity
correction has resulted again in a slight corrective frequency
shift in the resulting -parameters.

E. Discussion

These results indicate that field-singularity correction enables
much faster convergence in the TD-Haar modeling technique.
Even in the case of 0edges, which have the strongest singular
fields, the -parameters converge well. For the 90corner, ex-
cellent convergence was obtained; the-parameters obtained
with the various discretization levels agree within 0.2 dB when
the field singularity is corrected. When analyzing waveguide fil-
ters, even though the discretization is relatively fine, the field-
singularity correction results in a slight corrective frequency
shift in the computed -parameters.

The CPU time for the analysis of the waveguides perturbed
by the thin iris is summarized in Table I. The computation was
done on a Sun Ultra-5 workstation with 275-MHz clock rate
and 256 MB of memory. As the discretization becomes finer,
the number of floating point operations increases dramatically
and, thus, so does the CPU time. Since the CPU time for the
field-singularity correction is negligible compared to the total
CPU time, the implementation of the field-singularity correction
is highly efficient.
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IV. CONCLUSIONS

A 2-D TD-Haar modeling technique with field-singularity
correction at sharp metal corners has been presented for the
TE polarization case. Various boundary conditions were imple-
mented to analyze waveguide problems. It was found that the
field-singularity correction based on quasi-static field approxi-
mation was effective in the TD-Haar technique. The field-singu-
larity correction allows us to use coarser discretization and the
Haar-wavelet modeling improves accuracy, especially when the
discretization is coarse. Faster convergence and better accuracy
of the -parameters were achieved when the field singularity
was corrected.
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