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Field-Singularity Correction in 2-D Time-Domain
Haar-Wavelet Modeling of Waveguide
Components

Masafumi Fujii Member, IEEEand Wolfgang J. R. HoefeFellow, IEEE

Abstract—A time-domain Haar-wavelet-based modeling tech-  In this paper, the time-domain Haar-wavelet-based
nigue has been applied to two-dimensional waveguide problems (TD-Haar) modeling technique [7], [8] for the two-di-
including discontinuities. The field smgu_larlty at dlscontlnw_tles _mensional (2-D) TE waveguide mode has been formulated
such as edges and corners of conductors is corrected by quasi-static_ .
field approximation. Combination of quasi-static correction and W'th,a complete set of th? 2-D Hae}r wavelets. Although Haar
wavelet modeling significantly improves the computational effi- Scaling and wavelet functions are simple rectangular functions,
ciency compared to conventional time-domain analysis techniques. they have the following important features.

The proposed technique was applied to waveguides perturbed

by thin and thick irises and also iris-coupled waveguide filters. 1) Haar wavelets are the only wavelets that are real, com-

The computational efficiency of the technique is demonstrated by pactly supported, symmetric, and orthogonal.

examining the convergence of the results obtained with different 2) This simplicity allows the modeling of complicated

discretizations. boundary conditions to be easier than other wavelet-based
Index Terms—Electromagnetic-field analysis, field-singularity methods.

correction, Haar wavelets, time domain. 3) The minimum support property allows arbitrary spatial

grid intervals, leading to a nonuniform grid scheme.

. INTRODUCTION These features of Haar wavelets fit very well to the space-dis-

AVELET theory has been introduced to time-domaifrete analysis methods like the finite-difference scheme.

formulation of electromagnetic-field analysis [1], In order to apply the 2-D TD-Haar modeling technique to
[2] to increase computational efficiency and accuracy comwaveguide structures, the following various features have been
pared to conventional algorithms. It has been reported thatplemented in this paper:
wavelet basis functions allow coarser discretization than the
conventional space discrete methods because of the smal
numerical dispersion property when applied to the electro-
magnetic-field analysis. When thresholding techniques are
included, wavelet-based methods acquire an adaptive grid
capability, which is one of the most desirable features in
solving differential equations.

?.) perfect electric conductor (PEC) and perfect magnetic
conductor (PMC) conditions;

2) Berenger's perfectly matched layer (PML) absorbing
boundary condition [9];

3) 90° and © corner node with field-singularity correction
by means of quasi-static field approximation that was

However, there are two difficulties that must be overcome first applied to the finite-difference time-domain (FDTD)
when using wavelets. One is a realization of complicated method.by Mur [10]. ) ]
boundary conditions and the other is an implementation of "€ combination of Haar-wavelet modeling with the

a thresholding technique—both may significantly increadigld-singularity correction technique considerably improves

computational overhead. Several papers have been publishelfffo COMPutational performance; the field-singularity correc-

tackle these difficulties by employing mathematically more sgion allows us to use coarser discretization. Moreover, the
phisticated wavelets such as Daubechies’ compactly supportéef-wavelet modeling improves accuracy, especially when
wavelets with two vanishing moments [3]-[5] and biorthogonéﬁ‘e dlsgretlzatlon is coarse and reduces the number of operation
B-spline wavelets [6]. These techniques have advantages?fproximately by half [8], [11]. . .

specific applications. However, significant advantages over N TD-Haar modeling is first applied to a simple rectan-
the conventional analysis techniques have not been achie@tfr waveguide terminated with PML absorbing boundaries.

thus far in terms of versatility, accuracy, and computationdfiS €xample conveys a clear understanding of the decomposi-
efficiency. tion of the electromagnetic field in a waveguide, as well as the

behavior of the wavelet basis in the analysis. The technique is

then applied to the analysis of waveguides with thin and thick
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Fig. 1. 2-D Haar basis functions for g, node. Hatched regions represen

+1 and unhatched regions represeftt. (a)e; (x)éx (=), (b) ; () (2), (€) tFig. 2. Implementation of a §@orner node at thd " sampling point of node

i(2)dr(2), (d) i ()Y (

(¢, k). Thin solid lines show the equivalent Yee grid. The hatched region shows
a PEC.

[I. FORMULATION AND IMPLEMENTATION 2ei — oAt
= 12
A. 2-D Time lIterative Difference Equations 0 2eip + oAt (12)
Maxwell’s curl equations for the TE case L= 24t . 1 ) (13)
' 2¢;1 + o At AzAz ik
OE, _ OH, )
or Mot The notations are simplified agVio = ;fLVi’ffl’k,
OF, :uan @ o = njl/Qlfil/_M, etc., with the time intervalAr,
dz ot time indexn, space indexes and k, and wavelet and scaling
9H, _ OH. :EaEy +.J,4+0E, (3) functions¢, ¢ = ¢ andz). Equations (7)—(9) are the same as in
9z Oz ot the conventional FDTD method, except that they are computed

are discretized. The field variables,, H., and H, are first O the four individual basis functions = ¢¢, ¢4, ¢¢, and
expanded by using the complete set of the 2-D Haar-wavet&f individually.
basis functions shown in Fig. 1. Using the quantities that are
defined byE and H fields multiplied by the grid intervals ~ B- PEC Edge and Corner Node
In order to model corners and edges of a conductor, special

WVik =0Eik (4) nodes are implemented to enforce the field near the corners and
na1/5liv1y2,k = py1 3Hig1)2, kA% (5) the edges_ to have a smooth field distribution. Furthermore, the
o — opy. A 6 singular fields around the corners and the edges are corrected
nt1/2ti, k+1/2 = ny1/242i, k41/2T (6)

by using quasi-static field approximation [10].

and applying Galerkin’s procedure to these components withl) 90" Corner Node: Fig. 2 shows an example of a corner

Haar scaling and wavelet basis functions, we obtain time-sté}f2de atthelu” sampling point. For the implementation of a™90

ping update equations of the following form [7], [8]: corner nodef, fields at the sampling points are calculated by
interpolation from the peripheral field values. In Fig. 2, thig

o =240 + Crnz (V10 — SVoo) (7) fields atthe corner node (noted with a black dot with acircle) are
o —;—LIO; 4 Con (= Wor + Wao) ®) interpolated from the peripheral field values (noted with double
H v — 37 0h mzr\~ (0 0

circles). By using the second-order Lagrange interpolation, and
considering thafE{4 = 0 at the corner, the, fields at the

Voo = CogVoo + C - {fJOh = ilon — Gdno — #l50) — %—fOO}
sampling pointsi?,” “ ul,” and “uw” are, respectively, given by

)
yll y lu ylu
where the updating coefficients with the material constants nBoo = L1kt + LonEy; (14)
andy are given by YEW = L1YEY 4 LyYEL: (15)
o A [Aﬂ 10) #Ego = Lo (leEé% + LQ%E3%>
T e [Az], + Ly ( LotBlh + LB + LYEL)
Gy = — B A2 11 Yl Yl Yl
mz — Liin Ax . ( ) =+ LQ (LOzEQIé —+ leEQ% —+ LQ%EQ%) (16)
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The Haar-basis coefficients at no@ie k) are then obtained by : oh =00 ;
the linear transformation
ypPP , : :
Wi yEY ' I PEC — -z
yE¢w yE{'u,
oo | =20 | Yo (20) Fig.5. 0 edge located at the#i” sampling poi
yp¥ y prul Fig. 5. edge located at thd¢” sampling point.
point, shown in Fig. 4, additional fields at sampling pointg™
where and ‘11" of node (¢, k + 1) are interpolated by

+1 +1 +1 +1
I (21) UES = LiiES; + LaYEg (24)

+1 +1 -1 -1 y pul ylu ylu
+1 -1 -1 41 éE01=Lo(L1éE01+L2éEoz)

1
AQDZQ

y ol y ol ylu
2) Field-Singularity Correction at 90Corners: Following +L (LozElo + Lok + L2ryLE12)

the discussion in [10], the implementation of the field-singu- ( ylu ylu y m)
i X . ) + Ly Lo¥Eoq 4+ LiYEST + LoYE 25
larity correction at the corner of the«” sampling point (see 2020 T e T 2 (25)
Fig. 3) is given by where the Lagrange polynomial coefficients are given by
At Ag (17)—(19). The above equations are calculated together with
zylu zrlu l—viyylu . . . . . .
oy = ot~ A, 12 Vot (22) (14)—(16) and the resulting field distribution is converted to
Zot A; Haar basis coefficients by the linear transformation (20).
—il = — %I,l;’é + o Aa; p 2Tyl (23) 4) Field-Singularity Correction at OEdges: The field sin-

gularity at the 0 edge shown in Fig. 5 is given by

wherery, = w/(2r — (7w /2)) = 2/3, and the correction factor

is 11287 = (2/3)21/3 ~ 0.83994737. et e At Az
3) 0°Edge Node: The 0 edge node is implemented in a sim- rdon = on + 1o Az

ilar way as in the 90corner node; it is slightly modified such

that the fields at five sampling points around the edge are inténgether with (22) and (23), where = 1/2 and the correction

polated and corrected. For the edge node at thegampling factor isr; 21~ = (1/2)2'/2 ~ 0.70710678.

2 Vo (26)




688 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 49, NO. 4, APRIL 2001

Ey total field

excitation region

() (b)

Fig. 6. Decomposition of thé&,, field distribution for theTE;, mode propagating in the WR-28 waveguide section. (a) TBtafield. (b) Geometry of the
waveguide section. (c) Wavelet decomposition of the tBtalfield into the 2-D Haar basis functions. In (c), each of the four quadrants associated with the basis
function coefficientsE##, E+v, E*#, andE*¥*¥ covers the entire waveguide section depicted in (a) and (b).
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Fig. 7. Top view of the inductive irises in WR-28 waveguide= 7.112 mm,
d = af2,andt = a/6. (a) Thiniris. (b) Thick iris.
a’?

I1l. APPLICATION TOWAVEGUIDE ANALYSIS —S—t—a

TD-Haar modeling was first applied to a simple WR-28 wave-
guide, then to the WR-28 waveguides containing discontinuities
such as thin and thick inductive irises, and finally to iris-cou-

PEC

pled waveguide filters. The waveguides in this paper were all a/6 Tz
terminated with eight-layer Berenger's PML absorbing bound- ()

aries [9]. The implementation of the PML boundary conditi0n|§, o _ L , -
. . .. . ig. 8. Discretization of the inductive irises in WR-28 waveguide. Thin lines
'_S str_alg_h’_[forward because itis |mplemented for each basis fu dresent Yee grid lines and thick lines represent the waveguide walls. (a) Thin
tion individually, as in the standard FDTD method. It must bigs. (b) Thick iris.

noted that the PEC or PMC boundaries for the waveguide side-

walls are enforced even in the PML region. E%, E*, ¥ and E¥* from which the totalE, field is re-
) ) constructed.
A. Simple Rectangular Waveguide It is noted that, in Fig. 6, the major part of the field is repre-

A simple WR-28 rectangular waveguide was first analyzeskented by=##, and that the magnitude &“* is much smaller
to demonstrate the decomposition of the total field into the 24han£¢?. Note also that the zero tangential electric field at the
basis functionsso, ¢, 10¢, andyp. The distributions of the PEC boundary is achieved through the superposition of the four
total £, field are plotted in Fig. 6, together with the coefficientdasis function coefficients.
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Fig. 9. S-parameters for the thin iris in a WR-28 waveguide obtained: (dig. 10. S-parameters for the thick iris in a WR-28 waveguide obtained: (a)
with field-singularity correction and (b) without correction. —: Marcuvitz’swith field-singularity correction and (b) without correction. —A§ = /48,
equivalent-circuit approximation. - - Ar = Az = a/48.------ CAr = Az = a/bl).- - (Ax = af24, Az = af27). -0 DAz = af12,
Az =af24.-- - - ‘Az = Az = af12. Az = a/15).
B. Waveguides with Inductive Irises In Figs. 9 and 10, one can see that, as the discretization be-

Waveguides with thick and thin inductive irises [12] wer&0mes finer, thes-parameters converge to a certain values. The
analyzed with and without the field-singularity correctionCONvergenceis betterwh_enthefleld-smgularltycorrectlon isim-
The configuration and the discretization of the waveguidédemented in the analysis.
are depicted in Figs. 7 and 8, respectively. A PMC wall was
placed along the longitudinal center of symmetry of the wave:, |ris Coupled Waveguide Filter—Thin Irises
guide to reduce the analysis region by half. Three different
discretizations were applied to each structure and convergencé& waveguide filter with infinitely thin irises [12] shown in
of the resulting S-parameters was examined. For the thifig. 11 was analyzed. In order to discretize the structure accu-
iris, the grid intervals wereAz = Az = a/12, a/24, and rately, the grid interval was chosen to &£96 in the direction
a/48, while for the thick iris, (Az, Az) = (a/12, a/15), of the widtha of the waveguide, where = 7.112 mm. The
(a/24, a/27), and (a/48, a/51), where the width of the distance between the outer iris and PML absorbing boundary
waveguidez = 7.112 mm. condition (ABC) was chosen to t#:. The grid interval along

The S-parameters of the waveguides obtained by tHbe length of the waveguide was 0.0875 mm. A PMC wall was

TD-Haar modeling are shown in Figs. 9 and 10. For the thplaced across the longitudinal center of symmetry of the wave-
iris structure, the frequency response was also obtained giyide and the total number of Yee cells was4842.
Marcuvitz's equivalent-circuit approximation [13], which, in Note that the grid employed for this case is considerably fine
this case, has a tolerance of less than 1% in magnitudesimply due to the accurate discretization of the structure. By
0.086 dB. The equivalent-circuit approximation for the thickising a nonuniform grid scheme, much coarser discretization is
iris is not demonstrated here because the approximation erawailable; hence, taking advantage of the improvement of com-
is not provided in [13]. putational efficiency through the TD-Haar modeling technique.
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Fig. 11. Top view of iris coupled WR-28 waveguide filter.= 7.112 mm,
do =af2,dy = af4,ds = a/6,L; = 4.90 mm, andL, = 5.595 mm.
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Fig. 14. S-parameters for the waveguide filter consisting of thick irises. —:
with field-singularity correction. - - -: without field-singularity correction.

S-parameters (dB)

TABLE |
CALCULATION CONDITIONS FOR THEWAVEGUIDE PERTURBED BY A THIN IRIS

Az=Az= afl2 af24 a/48
Y/ # of Yee cells 6x48 12x96 24x192
/ Time steps 8480 16960 33920

' ‘ ' 3 e 36 CPU time (s) 10 64 555

-50

30 31 32

33
Frequency (GHz)

Fig. 12. S-parameters for the waveguide filter consisting of thin irises. —onfiguration is not exactly identical to the original design [14],
with field-singularity correction. - - -: without field-singularity correction. [15]. The maximum discretization error occurred at the outer
irises, and was 3%.

T T2 T2 Ty This structure was again analyzed with and without the
field-singularity correction at the corners of the irises. The
resultingS-parameters are shown in Fig. 14. The discretization
error caused a frequency shift by about 200 MHz for the second

a dip. However, this problem can be overcome by an accurate
discretization using nonuniform grids. The field-singularity
correction has resulted again in a slight corrective frequency
shift in the resultings-parameters.

Fig. 13. Top view of the iris coupled WR-28 waveguide filter. E. Discussion

(}1_:‘.1%?% m (;%d_Tzsfoll.?’riR._ 2hba = 1109, B = 4702 mm, These results indicate that field-singularity correction enables

much faster convergence in the TD-Haar modeling technique.

. ) ) i . Even in the case of°Gedges, which have the strongest singular
This structure was analyzed with and without the f'eld's"ﬁelds, theS-parameters converge well. For the’ @rmer, ex-

gularity correction at the _edggs of the irises_, and the resultieg”ent convergence was obtained; theparameters obtained
S-pgrar_neters are shqwn n '_:'g' 12. E\_/en with the prgsent d\'ﬁfth the various discretization levels agree within 0.2 dB when
cretization, the fleld-_smgularlty correction makes a S_I'ght COthe field singularity is corrected. When analyzing waveguide fil-
rective frequency shift in the-parameters. The CPU time wasg s aven though the discretization is relatively fine, the field-
ab?“t 3h. T(? obtain the same accuracy W_'thOUt_ thg f'eld's'n_%hgularity correction results in a slight corrective frequency
larity correction, one would need a finer discretization, Ieadlrg;hhct in the computeds-parameters.

to a longer computation. The CPU time for the analysis of the waveguides perturbed
) ) ) ) ) by the thin iris is summarized in Table I. The computation was
D. Iris Coupled Waveguide Filter—Thick Irises done on a Sun Ultra-5 workstation with 275-MHz clock rate

A waveguide filter consisting of thick irises shown in Fig. 13&and 256 MB of memory. As the discretization becomes finer,
was then analyzed. Uniform square grids were used in the arthk number of floating point operations increases dramatically
ysis, and the grid interval was chosen to 806 or 0.0667 and, thus, so does the CPU time. Since the CPU time for the
mm. A PMC wall was placed across the longitudinal center @&ld-singularity correction is negligible compared to the total
symmetry of the waveguide. The total number of Yee cells w&PU time, the implementation of the field-singularity correction
53 x 443. Due to the restriction of the uniform grids, the filteis highly efficient.
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IV. CONCLUSIONS [13] N. Marcuvitz, Waveguide Handbook Boston, MA: Boston Tech.,
. . . . . . 1964.
A 2-D TD-Haar modeling technique with field-singularity [14] w. Menzelet al, “Analysis of a millimeter-wave filter using transmis-

correction at sharp metal corners has been presented for the sion line ma}’t_rix and mode matching methods and comparison with mea-
TE polarization case. Various boundary conditions were imple- Sclgﬁfm&rgﬁte'rgoé :’tr,l,gﬂnfg'g;vbElr%%rg_sggfs?p" Comput. Electromag.
mented to analyze waveguide problems. It was found that thgs) c.Eswarappaand W. J. R. Hoefer, “Autoregressive (AR) and autoregres-
field-singularity correction based on quasi-static field approxi-  sive moving average (ARMA) spectral estimation techniques for faster
mation was effective in the TD-Haar technique. The field-singu- %ma\',‘;'yj'zs (gpﬁ"zcig‘yf‘z’jffulggffggf Trans. Microwave Theory
larity correction allows us to use coarser discretization and the

Haar-wavelet modeling improves accuracy, especially when the

discretization is coarse. Faster convergence and better accuracy

of the S-parameters were achieved when the field singulari
was corrected.
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